
The Blit: A Multiplexed Graphics Terminal

Rob Pike

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The Blit is a programmable bitmap graphics terminal designed specifically to run
with the Unix operating system. The software in the terminal provides an asynchronous
multi-window environment, and thereby exploits the multiprogramming capabilities of
the Unix system which have been largely under-utilized because of the restrictions of
conventional terminals. This paper discusses the design motivation of the Blit, gives an
overview of the user interface, mentions some of the novel uses of multiprogramming
made possible by the Blit, and describes the implementation of the multiplexing facilities
on the host and in the terminal. Because most of the functionality is provided by the ter-
minal, the discussion focuses on the structure of the terminal’s software.

Sometime in 1983

The Blit: A Multiplexed Graphics Terminal

Rob Pike

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

The Blit* is a graphics terminal characterized more by the software it runs than the hardware itself.
The hardware is simple and inexpensive (Figure 1): 256K bytes of memory dual-ported between an
800×1024×1 bit display and a Motorola MC68000 microprocessor, with 24K of ROM, an RS-232 interface,
a mouse and a keyboard. Unlike many graphics terminals, it has no special-purpose graphics hardware;
instead, the microprocessor executes all graphical operations in software. The reasons for and conse-
quences of this design are discussed elsewhere.5

The microprocessor may be loaded from the host with custom applications software, but the terminal
is rarely used this way. Instead, a small multi-process operating system is loaded into the terminal, and the
processes under that operating system are then loaded. The operating system is structured around asyn-
chronous overlapping windows, called layers.6 Layers extend the idea of a bitmap and the bitblt_____ operator2,5

to overlapping areas of the display, so a program may draw in its portion of the screen independently of
other programs sharing the display. The Blit screen is therefore much like a set of truly independent, asyn-
chronously updated terminals. This structure nicely complements the multiprogramming capabilities of
Unix, and has led to some new insights about multiprogramming environments.

Programs in the terminal have access to an extensive bitmap graphics library, implemented using the
layerop______ primitive,6 that resembles few other such libraries in its use of abstract data types for geometrical
objects and its lack of device independence� the library is closely coupled to the terminal and its pro-
gramming environment.5 The programs that have been written for the Blit include a popular text editor with
a paucity of commands, a debugger that can be used effectively without reading any documentation, a sur-
feit of 24×80 character terminal emulators, and not nearly enough games. But this paper is not about the
programs in the terminal so much as their environment and interrelationships. The layers paper discusses
how to update overlapping windows asynchronously; this paper discusses what to do with them.

The discussion is in three main sections: an overview of the history and motivation behind the termi-
nal; a brief description of the user interface; and some details of the implementation. The reader is assumed
to have some familiarity with the Unix operating system, although the details relevant to the Blit will be
discussed.

History and Motivation

The original idea behind the development of the Blit hardware was to provide a graphics machine
with about the power of the Xerox Alto,9 but using 1981 technology (large address space microprocessors,
64K RAMs and programmed array logic) to keep size, complexity and particularly cost much lower. Too
many graphics ‘‘workstations’’ are so expensive that several people must share one, sometimes with sign-
up lists. The Xerox dream of high-performance graphics on everyone’s desk has not been realized, and
although we didn’t plan to make the dream a reality, we did want high-performance graphics onour desks.

Because we refuse to have rotating machinery in our offices, we wanted to build the Blit around a
network interface rather than a disc. But after several lengthy discussions we decided that network hard-
ware and software were not yet inexpensive, available or reliable enough to be the center of a workstation
(this was early in 1981, and the situation now (mid 1983) is hardly better). Rather than compromise our

* The name comes from the second syllable of the bitblt_____ graphics operator.2,5 It is not an acronym.

Sometime in 1983

- 2 -

Figure 2. A representative Blit screen. The small layer at center right is running the debuggerjoff, which is
examining the menu data structure in the text editorjim, running in the upper layer. jim is the current process
� its layer is not freckled� and is editing the files for this paper:mpx.troff is the troff input, and the vari-
ousfig files are pic___ descriptions of the illustrations. The lowerjim window is editing the description for Fig-
ure 1, and when the user selectswrite from the menu, the file will be written and the picture in the typesetter
emulation layer at the bottom will asynchronously draw the new picture (see the text). The small layer at the bot-
tom is running a dynamic Unix system monitor, reporting the current time, average number of Unix processes
ready to run, and change in that number in the last minute. The textured bar in the upper portion of the layer ad-
justs constantly to report the fraction of host CPU time consumed (by all users) in, from left to right, regular user
computation, low priority user computation, system overhead, character processing, and idle time. The constantly
shifting bars give interesting feedback on the quantity and quality of computation on the host computer. The large
obscured layer in the middle is running the Unix shell; the other layers are running down-loaded Blit programs
with host support. Note the relationships between the programs: the debugger is examining the editor, but the edi-
tor is free to run; the editor and typesetter emulator are asynchronously coupled through the file system; the sys-
tem monitor runs constantly, and all programs are able to draw on the display at any time, regardless of overlap or
user attention.

principles, and to keep costs low, we therefore chose to make the Blit a regular terminal with an RS-232
EIA port to a time-shared host. Only one integrated circuit is needed to connect the microprocessor to the
EIA line, so the electronics fits on a single board, which minimizes cost, size and packaging complexity�
the board mounts inside the monitor cabinet. This decision to use RS-232 limited the high end of the

Sometime in 1983

- 3 -

capabilities of the Blit, but it expanded the low end enormously. Blits can be used anywhere 24×80 ASCII

terminals are used, including in the office of everyone in our research center.

But perhaps most important (at least to us), Blits are inexpensive, portable and easy enough to com-
municate with that we can take them home. Researchers in our group have home 1200 baud dial-up termi-
nals. For the home computing environment to be effective, it must be as similar to the office environment
as possible; although 1200 baud is slow (our terminals at work run at 19200 baud), a Blit at 1200 baud is
much nicer than a regular terminal at 1200 baud. Also, the local processing power of the terminal can make
up for some of the reduced bandwidth. So although a high-speed network would be desirable, much of the
Blit’s success can be attributed to the use of RS-232.

We initially intended to use the Blit to explore interactive graphical environments along the lines of
Smalltalk, but soon decided that we had neither the energy nor the inclination to build a complete program-
ming environment. Unix has a comfortable set of tools for program development and general programming
that would require great effort to reproduce, but that we wanted to use when developing and using the Blit.
Also, Unix is the framework of all computing done in our group and is unlikely to be supplanted easily by
something new, no matter how attractive. We therefore began thinking about using the Blit to improve the
Unix environment, rather than replace or even merely add to it.

One of Unix’s distinguishing characteristics is multiprogramming, the ability to run several programs
at once. The best known use of this is the pipe, an I/O connection between two processes that sends the
output from one process to the input of another. The Unix command interpreter, called the shell, has a sim-
ple syntax for pipes:

who lpr

sends the output of who____ to the lpr___ command, which spools output for the line printer.

Programs in a pipeline are related by their interconnection, but Unix also supports simultaneous exe-
cution of unrelated processes. The shell postfix operator &__ runs a command in the ‘‘background,’’ that is,
without waiting for it to finish. For example,

cc prog.c &

runs the C compiler on the file prog.c______ and returns immediately to the user; normally the shell would wait
for cc__ to complete before reading the next command from the terminal. Background processes have their
input disconnected from the terminal, but messages printed on the terminal will appear there, asyn-
chronously with other input and output on the same terminal. This can be annoying if a process using the
terminal interactively is maintaining a full-screen image, because output from background processes will
modify the screen image without the foreground process’s knowledge. For example, error messages from a
background cc__ will interfere with a screen editor.

The problem is that several processes are using a single terminal for their I/O. If the terminal were
multiplexed between the processes, their input and output could be kept separate. The ‘‘job control’’ soft-
ware3 developed by Jim Kulp at IIASA in Vienna and Bill Joy at U.C. Berkeley allows the user to pass the
terminal between processes on the same terminal, essentially by flipping processes from the background to
the foreground at the user’s signal. But the state of the terminal is not maintained correctly when the user
flips between processes� the screen contents and terminal modes are not restored to those of the new fore-
ground process. The problem is resolved by interfacing the editors to the job control mechanism so they
can preserve the screen’s appearance, but that is far from transparent to the programs.

To provide a better terminal for the Unix world, we began thinking about programming the Blit so
each process or related set of processes has a reserved portion of the screen, called a window. That way,
compiler error messages appear in the window where the compiler is running, and editing can continue
undisturbed in another window. If the terminal maintains the state for the various processes, and provides
an appropriate user interface for creating and switching between windows, the Unix system need not have
job control or maintain the state of the screen for the various processes. Instead, Unix can treat the win-
dows like individual terminals.

Most window systems permit the user to focus attention on one window at a time, with the other win-
dows maintained statically. Windows on the multiprogrammed Unix system, however, must be updated

Sometime in 1983

- 4 -

asynchronously� characters written to a window by a process must appear immediately, regardless of
whether the user’s keyboard is currently connected to that window. Otherwise, compiler errors would not
appear until the user asked for them, which would cancel some of the advantages of multiprogramming.
Also, as will develop later, the possibility of conveniently controlling asynchronous processes leads to
some innovative computing techniques.

While the Blit hardware was being designed, we experimented with asynchronous windows on a Blit
predecessor built by Dave Ditzel. Following the pattern set by ‘‘intelligent terminals,’’ we programmed the
terminal to interpret escape sequences to create, delete and switch the host character stream between win-
dows. A program on Unix sat between the user programs and the terminal and inserted escape sequences in
the character stream to send data to the correct window. Although this early implementation was clumsy
and fragile, it demonstrated the feasibility and power of an asynchronous window terminal and pointed out
the issues that must be resolved for a workable multi-window terminal:

� Windows must update asynchronously. The trial system was primitive, but worked well enough to
be convincing.

� The screen is not big enough (no matter how big it might be). Therefore, windows must overlap.
The desires for overlap and asynchronism led to the development of layers, an implementation of
overlapping, asynchronously updated windows.

� The software to generate the incremental control information (escape sequence ‘‘switch to window
x’’) from high-level requests (draw these characters in this window) was messy� too much state
information was maintained by the terminal and guessed at by the Unix program. The implementa-
tion also encouraged attempts to optimize the number of characters sent, which added to the com-
plexity, a situation familiar to authors of screen editors. Putting all data into labeled packets elimi-
nates this confusion and obviates optimization.

� A simple RS-232 connection is not robust or controllable enough to connect two communicating pro-
grams, in this case the Unix system and the code in the terminal. An error-corrected protocol with
flow control is required.

� To draw graphics in the windows, sending escape sequences is traditional but makes poor use of the
processing power of the terminal, and requires the terminal to be pre-programmed with all desired
capabilities. Contrary to popular usage, an intelligent terminal is not anidiot savant, it is one that can
be educated. If the terminal could be dynamically programmed, the desired functionality could be
added on demand. Our solution was to write a small time-shared operating system for the terminal,
called mpxterm________ (multiplexed terminal), into which we dynamically load programs from the host, cus-
tomizing the terminal process running in a layer for the execution of a particular graphics task.

The Blit therefore developed into a programmable graphics multiplexer, distributing the terminal
resources� screen, mouse, keyboard, RS-232 interface� between terminal processes connected to inde-
pendent Unix processes.

Since the design of the terminal’s software was largely dictated by the desired user and programmer
interface, the next two sections present the overall user interface and an overview of a couple of programs
that run in the multiplexed environment. The subsequent sections outline the implementation of the multi-
plexing software.

What the user sees

After logging in to a Unix system, a Blit user types ‘‘mpx ’’ to the shell. The multiplexed terminal
code is then down-loaded into the terminal, which takes a few seconds at 19200 baud and about two min-
utes at 1200 baud. mpxterm________ includes all the graphics primitives, but since the graphics primitives and
interrupt-level I/O drivers execute out of ROM, they are not down-loaded.

mpxterm________ is controlled by the mouse. Of course, programs running in the terminal may also be con-
trolled by the mouse, so some rules must decide which mouse events are interpreted by which process in
the terminal.

The screen consists of several possibly overlapping layers. Portions of the screen not occupied by
layers are ‘‘colored’’ with a distinctive grey texture. Except for mpxterm________’s internal control and

Sometime in 1983

- 5 -

demultiplexer processes, terminal processes are one-to-one with layers. Once the first layer has been cre-
ated, exactly one layer is the ‘‘current layer’’: the layer that receives keyboard characters and interprets
mouse motion and button hits. The mouse and keyboard come as a pair; all user input is directed at a single
process. The control process continually updates the current process’s mouse coordinates and button state,
and a process may ask to be suspended until it is ‘‘current’’. When a button is depressed, the current pro-
cess receives the event if the mouse cursor is pointing at a visible portion of the process’s layer; otherwise,
the button hit is interpreted by the mpxterm________ kernel.

To identify the current process, the layers of all non-current processes are stippled by a gauzy texture,
leaving only the current layer with a clear image (Figure 2). The usual solution to this identification prob-
lem is to label the windows, but we elected not to label because the label takes up useful screen space and
either the user or the program must decide what the label is, neither of which is appealing. Another possi-
bility is to distinguish the borders of the layer, but that probably isn’t a strong enough visual clue, espe-
cially when the user is concentrating on a portion of a large layer. However, we admit that this identifica-
tion issue is one of the uglier aspects of the system, and that our solution is at best a small improvement
over others. One decision which differs from the usual, but in which we are on firmer ground, is our
requirement that a mouse button hit changes the current layer. In most systems, the location of the mouse
defines the current window, but when the current window may be partially or even wholly obscured, this is
unworkable. (It makes sense, and is common, for the current layer to be obscured: consider typing instruc-
tions to a command in one layer based on data displayed on a graph in another large, nearly full-screen,
layer.)

The mouse has three buttons, and the Blit software maintains a convention about what the buttons do.
The left button is used for pointing. The right button is for global operations, accessed through a menu that
appears when the button is depressed and makes a selection when the button is lifted. The middle button is
for local operations such as editing; a simple view of the situation is that the right button changes the posi-
tion of objects on the screen and the middle button their contents. For example, pointing at a non-current
layer and clicking the left button makes that layer current. Pointing outside the current layer and pushing
the right button presents a menu with entries for creating, deleting and rearranging layers. Clicking a but-
ton while pointing at the current layer invokes whatever function the process in that layer has bound to the
button; the next section discusses a couple of programs and how they use the mouse.

The state of mouse input is reflected by the cursor tracked by the mouse as it is moved. Usually, the
cursor is an arrow pointing to the pixel at the mouse’s location. A program may change the cursor to reflect
its state. For example, when the user selects New____ on the mpxterm________ menu, the cursor switches to an outlined
rectangle with an arrow, indicating that the user should define the size of the layer to be created by sweep-
ing the screen area out with the mouse. Similarly, a user who has selected the Exit menu entry is warned by
a skull-and-crossbones cursor that confirmation is required before that potentially dangerous operation will
be executed.

A couple of ‘application’ programs: jim and joff

A variety of programs has been written for the mpxterm________ environment. As with any graphics termi-
nal, the first few programs were games, which in this case were characterized by being self-playing, at least
optionally. On the multiplexed Blit screen, a game program can play itself while the user does putatively
useful work in another layer. After the games came a spate of terminal emulators, coinciding with the pro-
liferation of Blits inside our research center, and triggered by the desire to bring along the programs written
for the 24×80 displays. This period has passed, and not entirely because a successful emulator has arisen.
Even strong supporters of the cursor-addressing style of terminal control have warmed to the possibilities of
a customized terminal program and communications protocol. Many of the 24×80 programs have been
supplanted by Blit programs that divide the task between the host and terminal. Two programs that divide
the labor effectively are jim___, a text editor, and joff___, a debugger for mpxterm________ programs. The references1,7

describe their user interfaces and the details of their implementation; here we present an overview of their

 This practice interferes with non-current processes drawing in their layers, but most graphics in the Blit world is done in
XOR_____ mode, which commutes with the stippling, and the operating system provides a simple routine to help with non-XOR
graphics.

Sometime in 1983

- 6 -

structure and illustrate how they use the programmability of the terminal.

jim___ is a multi-file screen editor that uses the mouse for all editing tasks and the keyboard only for
input of text, including filenames and strings such as regular expressions for context search. It is written in
two pieces: a Unix program that maintains a copy of the entire file being edited and executes global opera-
tions such as context searches on the copy; and a Blit program that does all editing and screen updating.
The two programs maintain parallel data structures. The Unix program maintains a complete copy while
the terminal tracks only what is visible on the display. Because the Blit program keeps the visible page
locally, screen update can be done entirely inside the terminal; in fact, the Unix program knows nothing
about the appearance of the display.

The two programs communicate by a protocol consisting essentially of ‘‘insert string’’ and ‘‘delete
string’’ message packets and requests for data, with strings containing arbitrary characters including tabs
and newlines. This high-level protocol allows the software to ignore the usual problems of screen update,
such as inserting and deleting tab characters and minimizing the length of transmitted strings that update
the screen, and makes jim___ efficient in host cycles compared even to line editors. The update algorithm used
by the terminal is discussed in the reference.7 Users want the screen to update quickly, so the protocol is
double-buffered for speed and the two programs usually execute asynchronously, with the terminal in con-
trol because that permits user input to be handled immediately even with low communications bandwidth.

Unlike most Unix text editors, jim___ has no interactive shell escape to invoke the command interpreter
from within the editor, because mpx____ permits the user to create a new layer with a fresh shell at any time.
The typical Blit display therefore has a jim___ layer and a shell layer for typing commands such as compilation
requests. Conversely, compiler error messages are trivially maintained by the display while a program is
being edited.

The joff___ debugger is also controlled mostly by the mouse, although the user interface is substantially
different from jim___’s. The Unix half of joff___ maintains the large symbol table for the Blit program being
debugged, and executes other large-scale tasks such as interpreting C expressions. The code in the terminal
displays menus at the user’s request, collects typed input, and monitors and probes the target process.

The protocol between these programs falls into two sections: plain text that is displayed in a scrolling
region in the debugger’s layer, and remote procedure calls that control the debugging, retrieve information
about the target process and build data structures such as menus and breakpoint tables in the joff___ terminal
program. The terminal buffers user input such as keyboard characters and mouse button hits, but the host is
in control. The menus displayed on a button hit are loaded by the host and the terminal is unconcerned with
their contents: all interpretation of user action is done on Unix. This structure is significantly simpler than
the protocol in jim___, but results in slower response, which is unimportant in a debugger.

joff___ has no direct interface to a text editor (although it displays the text of the source line at a break-
point), again because the mpx____ environment allows the user to have an editor available at all times.

Both jim___ and joff___ down-load about 10K bytes of code to the terminal. The Unix half of jim___ is
another 20K of VAX-11 code; joff___ is about 70K on the VAX.

What does it all mean?

The Blit application programs, with some noteworthy exceptions, are really not all that interesting.
They are fairly ordinary graphics programs, many of them written as playthings by people new to graphics.
What is interesting is how the programs work together in the underlying environment. The standard exam-
ple is compiling a program while editing, with compiler messages appearing in a separate layer without
interfering with the editor, but there are more interesting examples.

Our local computing environment contains many minicomputers connected by a local-area network,
controlled by a cluster of five 24×80 terminals so the person maintaining the network can simultaneously
monitor several machines, including those running the network control program. With a Blit, a program-
mer writing network code can instead monitor and debug the distributed processes from a single terminal
� and from anywhere there’s a Blit, including at home. Similarly, a Blit makes a fine console terminal for
a multi-processor computer.

The graphics capabilities can be used for more than text. Computer-aided design applications are

Sometime in 1983

- 7 -

obvious, although there actually haven’t been many CAD programs written� certainly fewer than have
been asked for. Still, it is valuable to be able to use one’s terminal to share graphics and text in separate
parts of the screen, for example to edit the textual description of an integrated circuit while inspecting a plot
of the circuit in another layer. This extends to looking at separate parts of the same circuit in different lay-
ers, or comparing different versions of the same circuit.

These are ordinary uses of multiple-window environments, but multiprogramming provides new
applications. For example, interactive design programs can be assembled out of existing parts, in the Unix
tradition. The figures in this paper were made with pic___,4 and the pic___ source edited with jim___. There is a pro-
gram proof_____ that interprets the typesetter codes generated by troff____ for display in a layer on the Blit. A large
layer was initialized running the pipeline

watch fig1.pic pic troff proof

where watch_____ is a variant of cat___ (the standard Unix program to display a file’s contents) that prints the file’s
contents each time the file is modified. Therefore, whenever the PIC file was written from jim___, watch_____
would notice it had been updated and send the new picture description down the pipeline, without starting a
fresh pic___ or troff____ process, for immediate display on the Blit. Syntax errors from pic___ can be redirected to
another layer or to a file, which is then watch_____ed in another layer. Although this is a far cry from a real
interactive picture-drawing program, it took only a few seconds to assemble, and is effective enough to fill
the gap until an interactive program is written.

An unexpected benefit of asynchronous processes has surfaced while using joff___. With the standard
Unix debuggers, the program being debugged is a child process of the debugger, which means for example
that a program cannot be attacked with the debugger if it was started independently. This is not fundamen-
tal to Unix, but rather a property of the usual terminal environment: the debugger must act as an I/O multi-
plexer between itself, the user, and the target program. When the terminal does the multiplexing, a debug-
ger can be started at any time and applied to any program, including one that is running � even itself.

A Blit asteroids game had a bug which caused a rock to pass over the spaceship without hitting it.
The bug was intermittent� perhaps once out of every hundred collisions� so setting a breakpoint was
impractical. Instead, joff___ was loaded and applied to an asteroids game, which was then played for about ten
minutes until the bug occurred. Then joff___ was told (by a flick of the wrist and two button clicks) to halt the
game. A breakpoint on the collision-testing routine wasthen set in the asteroids program, and the game
resumed. The breakpoint fired and the bug was found easily.

As a second example, consider the following scenario, debugging joff___. Some changes are made to
joff___, making a new buggy version njoff____. An intentionally buggy program, say bugs____, is loaded in the Blit as
a target for njoff____. During testing, njoff____ makes some mistake interpreting a data structure in bugs____. An
instance of joff___ is therefore loaded to investigate njoff____ to see where it went wrong, but the correct interpreta-
tion of the data structure is unknown, so a second joff___ is called up as a reference source to look at bugs____. At
this point, there are three debuggers and a target program active on the terminal, but the situation is com-
fortably under control, although inconceivable in a conventional terminal environment.

There are more mundane uses of the asynchronism. Many of us have mail boxes on remote
machines, reachable only through 1200 or even 300 baud phone lines. A mail message could take a minute
to print out at 300 baud, but a Blit user need not be idle during that time. The layer with the remote connec-
tion will collect the message while the user does something else in another layer, so the user____’s bandwidth
can be much higher. If the phone lines to the remote machine are all busy, the user could type

until cu remote-machine
sleep 600

done

to try every ten minutes until the connection is made. The layer with this program will print something like

connect failed: line busy

every ten minutes. Meanwhile, the user can do anything else on the terminal. Eventually, a line becomes
free, the remote machine’s login banner pops up, and the user can switch to that layer and log in. No com-
bination of background processes, job control, and static window contexts can achieve this so simply.

Sometime in 1983

- 8 -

mpx : the host process multiplexer

The multiplexing is handled by software distributed between the host and terminal. A user-level
Unix program, mpx____, communicates with a small real-time multi-process operating system, mpxterm________, run-
ning in the terminal (Figure 3). The design of mpx____ is sensitive to the details of Unix inter-process commu-
nication (IPC) facilities, which vary widely between Unix versions. mpxterm________, on the other hand, is inde-
pendent of the host except for communication by a simple protocol that it is mpx____’s job to interpret; all ver-
sions of mpx____ speak the same protocol.

The protocol multiplexes I/O on the single RS-232 cable from the terminal to the host. The multi-
plexing connects Unix process groups one-to-one to processes in the terminal. A user on a Unix system
with a conventional terminal types instructions to a shell. The shell and the programs it invokes, such as
editors and compilers, are members of a single process group, a structure maintained by the Unix kernel.
The process group associates processes with a terminal session, mainly to send events such as keyboard
interrupts to all processes on the terminal.

mpx____ couples each Unix process group to an independent terminal process in the Blit. Four basic
capabilities are necessary to implement mpx____:

� dynamic creation and control of several process groups by a single master process mpx____)

� multiplexing of I/O between the process groups and the master

� a means to prevent the master being suspended when it reads data from a process that has no charac-
ters available while another has data

� distinguishability of control information (such as setting terminal modes) and data on an inter-
process channel

The original mpx____ was written using Greg Chesson’s file multiplexing facilities in 7th Edition Unix.
On Unix System V, the IPC for mpx____ is provided by a kernel driver written by Piers Dick-Lauder. The mpx____
running on the author’s machine exploits the user-level IPC in the character I/O system of 8th Edition Unix.
Since that version of mpx____ is the closest to hand, it will be described here. It comprises about 1600 lines of
code, half of which implement the error-correcting protocol between the host and the terminal. A
schematic of the mpx/mpxterm____________ pair is in Figure 3.

Character processing in the 8th Edition Unix kernel is done by a sequence of coroutines called line
disciplines,8 each of which is a full-duplex I/O pseudo-process that performs its portion of the processing
and hands the data along to the next line discipline. They are not proper processes because the kernel main-
tains no call records across scheduling boundaries. They are connected together serially to achieve the
desired function, much like a full-duplex Unix shell pipeline. For example, a terminal connected to a user
program on our local area network is connected, from the bottom up, to a network driver (essentially half of
a line discipline, the other half residing in the network), a line discipline interpreting the network protocol,
a standard terminal line discipline that provides services such as character echo and correction of typing
mistakes, and another half-discipline to connect to user level.

To have a terminal on Unix, there must be a name in the file system to attach to the associated data
structure in the kernel. The directory /dev/pt______ contains even-odd pairs of junctor devices called ‘‘pseudo-
terminals,’’ or pt__’s. If one process opens an odd numbered pt__ file, and another opens the corresponding
even file, then data written on one file is available for reading on its partner, in symmetrical full-duplex
fashion. The odd-numbered member of a pair is the master. Masters and slaves differ only in the rules for
opening; I/O is symmetric. Master pt__ files may be open in at most one process. A process wishing to
establish a connection opens an odd-numbered file; then one or more slave processes may open the corre-
sponding even-numbered file and communicate with the master.

Multiplexed I/O is done by a primitive called select_____. Because Unix I/O blocks� if a process reads
from a device that has no data available, the process is suspended until data arrives� mpx____ cannot simply
read from the active processes in turn, or it may hang waiting for data from one process while another has
data. The select_____ call returns a bit vector indicating which file descriptors have data to be read, or, according
to an argument in the call, which file descriptors may be written to without similarly being suspended until
the data are read at the other end.

The interconnection of these components is illustrated in Figure 4. Following the path from a user

Sometime in 1983

- 9 -

Shell 1

Shell 2

Shell 3

...

Shelln

mpx
RS-232

mpxterm

display

keyboard

mouse

Term 3

...

Termn

Term 2

Term 1

Figure 3: Overview ofmpx

Unix

Kernel

User

Blit

RS-232

tty tty msg msg

tty

pt pt

Shell 1

Shell 2 mpx demux

Layer 1

Layer 2

Figure 4: Inter-process communication inmpx
process such as a shell, running in a layer, characters enter the kernel and flow through a terminal discipline
that does terminal processing for the user process, such as echoing characters typed by the user. The bot-
tom of the terminal discipline connects to the slave side of the pseudo-terminal. The characters cross to the
master side, where they are passed through a message line discipline out of the kernel to mpx____. The message
discipline converts all information on the path into data messages, each of which is prefixed by a header

Sometime in 1983

- 10 -

identifying the type of the message. Ordinary characters are tagged DATA______, system I/O control requests
ioctl____’s) are marked as such, and some other control messages are translated, such as HANGUP_________, which
occurs when the channel shuts down � for example, when the shell exits. These messages are read by mpx____,
which identifies the channel with data using a select_____ call. mpx____ interprets the data, which for ordinary char-
acters merely involves reformatting the message (adding a tag specifying which layer will receive the data
and a cyclic redundancy check for error detection and recovery) and sending it down its standard output to
the terminal. Data from the process is read from a channel established by mpx____ (see the discussion of layer
creation below), while the connection to the Blit is through the standard input and output, because mpx____ is
multiplexing its subprocesses onto its terminal � the Blit. On the other hand, the standard input and output
of the shell process in a layer are connected to mpx’s_____ channel for that layer.

On their way from mpx____ to the Blit, the characters enter the kernel again, where they pass through a
terminal discipline (the one installed by the login program when the user signed on to Unix before running
mpx____; for data transparency this discipline is actually largely disabled) and out to the terminal. In the Blit,
the layer identification tag is stripped off, and the data placed in the input buffer of the terminal process in
the appropriate layer. Information flowing the other direction follows the reverse path.

Although this structure sounds complicated, it is actually fairly clean: the delicate requirements of the
inter-process communication are met by connecting together small piece parts with simple interfaces. As a
result, the multiplexing interferes with no other programs� in contrast, for example, with the original mpx____
using multiplexed files, which prohibited running in layers programs that themselves multiplexed. More-
over, because the 8th Edition Unix I/O system was written precisely to do this sort of stream processing and
interconnection, it is efficient. Perhaps the most brutal test of efficiency is down-loading a program into a
terminal process: the terminal does almost no processing of the program text, so it is constantly waiting for
data from the host. After each 64 bytes of data sent, an acknowledgement packet from the terminal arrives
and is processed by mpx____ as part of the communications protocol, so there is frequent scheduling between
the down-loader and mpx____. Our Unix system has no assembly language assist for terminal I/O, the hardware
generates an interrupt for every character sent or received, and the data from the down-loader cross the
kernel-user interface twice. Despite this overhead, at 19200 baud the RS-232 line is almost saturated,
delivering over 16000 user bits per second into the terminal and consuming 70% of a VAX-11/750 (this
implies a maximum of about 400 instructions executed per byte on the VAX). To our knowledge, no other
version of the system on the same hardware can deliver down-loaded programs faster than about 6000
baud.

When the user on the Blit asks to create a new layer, the following events occur. The terminal allo-
cates a layer data structure on the display and creates a terminal process to manage it. It then sends a mes-
sage on its RS-232 connection� the standard input of mpx____ � stating that a layer has been created and
specifying the channel in the communications protocol onto which its data will be multiplexed. mpx____ opens
an idle master pt__ file, and the channel number (different from the communications channel) returned by the
open is mpx____’s connection to the subprocess about to be created. mpx____ pushes a message line discipline onto
the stream on the master side of the pseudo-terminal and forks to create a child process. The child closes
all its file descriptors and opens the slave side of the pseudo-teletype, which becomes its standard input and
is duplicated to form its standard output and standard error output. It then pushes a terminal line discipline
onto the stream and initializes the terminal modes. Finally, it establishes itself as a separate process group
and executes a shell. When the shell begins, it prints a prompt on its standard output, which flows through
the path outlined above and eventually arrives in the input buffer of the terminal process, which copies it to
the display, and the act of creation is complete. The elapsed time is perhaps a half second.

mpxterm : the terminal operating system

Inside the Blit runs a tiny operating system that provides essentially the same multiprogramming and
data transparency as mpx____. It is basically a mirror image of mpx____, but with considerably less mechanism,
largely because the multiplexing is built into the operating system rather than being constructed at user
level. The basic structure of the system is a set of independent processes scheduled round-robin that call a
primitive queue-based kernel to service I/O requests.

At the time of writing, mpxterm________ is 1627 lines of C, excluding code for the protocol (which uses the
same source files as mpx____) and the graphics primitives, but including all the user interaction and I/O

Sometime in 1983

- 11 -

primitives; and 204 lines of assembler: 11 lines to switch stacks, 108 lines to interface interrupt routines to
C code, and 85 repetitive lines to interface to C code after a process traps.

Process switching is performed only at the process’s request; there is no preemptive scheduling.
Since the Blit is a terminal, and not a general-purpose computer, the processes all do some form of input or
output, whether to read characters from the host or keyboard, or even just display something on the screen.
If a process wants a character from, say, the keyboard, but none has been typed, it can suspend itself by
executing

wait(KBD)_________

which says ‘‘wait until a keyboard character becomes available.’’ Because the display is updated at 30Hz,
a display program will usually suspend execution until the screen reflects the change it has made in mem-
ory. Therefore, although the programmer must be aware that the CPU is being shared among other pro-
cesses, the habit of relinquishing the processor fits smoothly into the discipline required for real-time
graphics programming. This structure keeps mpxterm________ simple (and easy to debug); except for the lowest
level of I/O, which must protect against device interrupts, there are no semaphores or interlocks in the ker-
nel, and the process control part of mpxterm________ was written and debugged in an evening.

The devices� mouse, keyboard, and host RS-232 port� are all interrupt driven. The keyboard and
RS-232 port place their characters into queues that are read by server processes running at user level (i.e.
with processor interrupts enabled). The mouse buttons generate an interrupt when their state changes, and
their value is kept in a global data structure, along with the mouse position. As the mouse moves, the hard-
ware updates two registers in the I/O page, but generates no interrupts. Instead, the mouse position on the
screen is updated during vertical blanking by a low-priority interrupt routine that runs off a 60Hz clock cou-
pled to the start of vertical retrace. Because of the 30Hz display refresh, there is no reason to update it more
frequently.

The clock interrupt and mouse button interrupt schedule a control process that multiplexes the mouse
among the user processes. At any time, only one user process receives mouse tracking and button hit infor-
mation from the control process. Any other process attempting to use the mouse is suspended until the user
indicates by a button hit, handled by the control process, that the mouse and keyboard should be bound to it
instead.

A second system process, the demultiplexer, reads the characters from the host input queue, unpacks
the messages and executes the error-correcting protocol. Correctly received messages are placed in the
input queue of the associated user processes. The error correction is transparent to the processes; as far as
they can tell, they have a direct link to a plain RS-232 wire, except that no flow control is necessary on
either end (compare this to the control-S/control-Q or NUL-padding flow control necessary with many stan-
dard terminals). The demultiplexer itself occasionally receives control messages, indicating for example
that a terminal process is to begin executing the down-load receiving procedure preparatory to loading a
new terminal program into a layer.

All resources are shared among the processes in the Blit. Memory allocation occurs through two
primitives: alloc____ allocates memory at fixed locations, to store programs, for example; and gcalloc______ allocates
relocatable memory in a compacted arena, to store bitmaps and strings. This split structure is imposed by
the open addressing of C and the necessity to compact the arena containing dynamically allocated bitmaps.
User processes and the kernel allocate using the same code, and each allocated object is tagged with a
pointer to the process that owns it, so storage can be reclaimed when a program exits. Storage allocation is
simplified by the lack of preemptive scheduling; interlocks during compaction are unnecessary, since allo-
cations are atomic.

Because the hardware provides no memory management, and since our C compiler does not generate
position-independent code, down-loaded programs are relocated in the host to an address returned by alloc____
in the Blit. Relocation is not expensive; the text editor, which is about 10K bytes long, is relocated in 3
seconds and downloads in about 6 seconds at 19200 baud. This is comparable to the initialization time of
most conventional screen editors.

The Blit hardware provides one feature for protection. Read or write references to the first 8 bytes of
the processor’s address space generate an interrupt that is caught by the kernel, which halts the offending

Sometime in 1983

- 12 -

process. Because a common C programming error is to indirect through a null-valued pointer, this small
feature has saved mpxterm________ many times.

For an unprotected system, mpxterm________ is pleasantly robust. It is certainly shut down quietly at the end
of a working day far more often than it crashes. Left running, its mean up time is several days, even during
periods of program development.

Programming

Processes in the terminal may be loaded, by a procedure analogous to executing a Unix program, to
customize the terminal for a particular task. The programmer’s interface to mpxterm________ is unaffected by other
programs running in the terminal. To a rough approximation, the programming environment is a virtual
machine: programs run as though they have a keyboard, mouse, display and host RS-232 connection all to
themselves.

The screen is multiplexed using the idea of a layer,6 which supports all bitmap operations, especially
bitblt_____, on an extended bitmap data structure that allows overlap. Each Blit process has a global variable
called display______, which is the layer data structure for the portion of the screen occupied by the process. The
display______ data structure contains the coordinates of the screen rectangle, used to clip graphics operations, and
a list of off-screen bitmaps containing obscured contents of the layer. To the programmer, display______ is like an
ordinary bitmap, obscured or not, and by executing graphics primitives on display______ the process can draw on
its screen regardless of overlap, and without communicating with a window manager when the layer config-
uration changes. As far as the process is concerned, it has its portion of the screen to itself. There is no
‘‘window manager’’ in the conventional sense � bitblt_____ is the window interface.

Characters arriving from the host are split by the demultiplexer into separate streams and placed in
the input queues of the appropriate processes. From a process’s point of view, the interface to the host is an
ordinary byte stream. The keyboard is handled differently, because the stream of typed characters is
directed at a process by the user. Still, the idea is the same: each process sees an ordinary byte stream from
the keyboard and is oblivious to characters directed to other processes.

Character I/O in mpxterm________ is non-blocking. Two routines, kbdchar_______ and hostchar_______, read characters from
the input queues for the process. If no characters are available, they return an error indication but do not
block, because typical terminal applications must be ready to receive input from either the host or the key-
board. When a process wants to suspend until characters become available, it calls wait____ with an argument
bit-vector stating which resources are of interest. wait____ returns a bit-vector indicating which queues have
data, so the inner loop of a typical terminal program is something like this:

int resource;

while(TRUE) {
resource = wait(HOST KBD);
if(resource & HOST)

draw _on_screen(hostchar());
if(resource & KBD)

sendchar(kbdchar());
}

sendchar________ sends characters to the host through the error-corrected channel. wait____ suspends the process, by
calling another process that is ready to run, until a character becomes available on either queue and no other
process is using the CPU. If no other process is ready, wait____ returns immediately when a character becomes
available.

Another system call, sleep_____, suspends a process for a specified number of ticks of the 60Hz clock, by
wait____ing for a timer set by a non-blocking ALARM________ resource. sleep_____ is roughly:

 The lbitblt_____ primitive, discussed in the layers paper,6 is aliased to bitblt_____ in the mpxterm________ programming environment, so the
distinction between bitmaps and layers vanishes � the programmer treats layers exactly like bitmaps.

Sometime in 1983

- 13 -

sleep(n)
int n;

{
alarm(n); /* set the timer n ticks in the future */
wait(ALARM); /* suspend until timer fires */

}

but includes protection in case the process has alarms pending. Since the hardware clock is coupled to the
vertical retrace, sleep_____ is often used to suspend a process until the picture it has placed in memory is visible
on the screen.

Each process has a global data structure describing the mouse state� position and button status�
that is updated asynchronously whenever the user has assigned the mouse to that process. A process may
wait until it owns the mouse by calling

wait(MOUSE)

Therefore, to wait for a button to be depressed, a process would execute

while(mouse.buttons == 0)
wait(MOUSE);

The following code draws line segments connecting mouse positions as the mouse moves:

Point p;

p = mouse.xy; /* first point, where mouse points now */
for(;;) {

q = mouse.xy;
segment(&display, p, q, OR);
p = q;
sleep(1); /* wait for mouse and display update */

}

The notation &display________ indicates that the address, rather than the value, of the display bitmap structure is
passed to segment_______. OR___ specifies that the bit pattern of the line is to be or’ed into display memory. Line
segments are drawn half-open, so adjacent line segments share no points.

As well as I/O, all graphics primitives are implemented as system calls, to interface to the layer code
but make everything look like ordinary bitmap graphics. Therefore the system call interface must be very
fast, or system call overhead will dominate graphics performance. Because there is no memory manage-
ment, processes all live in the same address space and system calls are indirect subroutine calls through a
vector at a known location. The execution penalty is only one extra instruction for a system call compared
to an ordinary procedure call. The mapping to the vector is done from C by defining the system calls in a
header file, so the mechanism is transparent to the programmer.

Programs are loaded into the Blit from the host computer’s disc by a user program on Unix that com-
municates with a special program load process in the terminal. By default, a layer runs a conventional
‘‘dumb’’ terminal emulator. When the Unix program executes a ‘‘bootstrap’’ ioctl____ request to initiate pro-
gram loading, mpx____ transmits the request on a reserved communications channel. The Blit demultiplexer
process shuts down the terminal emulator and begins the program loader process, which allocates memory,
returns to Unix the base address of the program, and then copies (asynchronously with the other terminal
processes) the relocated program from its HOST______ queue into memory. Since the channel is error-corrected,
the loading protocol just relocates the program and writes, unformatted, the relocated binary� no check-
summing or verification is necessary. When the loading is complete, the program begins executing. If it
executes the exit___ system call, the layer remains active but is re-initialized with the dumb terminal emulator.

Sometime in 1983

- 14 -

Retrospection, introspection and conclusions

The Blit has taught us that multiprogramming has been underused. A user is capable of running sev-
eral related or unrelated programs in parallel if the user interface makes it easy to control their execution.
The Blit has also shown the advantages of isolating the issues of user interaction from the operating system.
All of the Blit software is user-level code, yet the Blit environment feels naturally coupled to Unix. The
Unix system really knows nothing about the multiplexing going on; the user is just running more processes
than usual. A large part of the Blit’s success can probably be attributed to our concentration on the graphics
and user interface issues, rather than the development of a new integrated, distributed programming envi-
ronment. There are a number of things worth noting that were done well on the Blit, and a number that
could be improved. To end on an upbeat note, we will discuss the mistakes first.

Although the graphics is fast enough, the hardware isn’tbig enough: memory is tight when working
on big programs, and there isn’t enough offscreen bitmap storage. The greatest problem, though, is cer-
tainly the low bandwidth. Putting aside the issues of availability, simplicity and portability, RS-232 is not
fast enough for file I/O. The text editor must be written in two parts, using the terminal much like a cache.
Consider context searches at 1200 baud, which would otherwise require sending the entire file, perhaps
hundreds of thousands of characters long, over the phone line. Unfortunately, writing one program in two
pieces is much harder than writing two programs. Still, we don’t want local disc. The Blit model� using
an inexpensive dedicated front-end for high-quality interaction on a traditional time-sharing system� is a
powerful one, and we prefer increasing the memory and bandwidth, leaving the basic structure the same, to
adding disc and therefore expense, noise, and the proliferation of local copies of software.

mpxterm________ doesn’t exploit multiprogramming enough itself. Layers and terminal processes are one-
to-one, counter to the current fads of message-based systems. There certainly needs to be more terminal
IPC, so for example text in one layer may be copied to another using the jim___ cut and paste operators.

Perhaps most importantly, the current Blit software is tending towards dis-integration:this layer is an
editor andthis layer is a debugger andthis layer is a circuit design program. This trend is counter to the
uniformity of environments that makes a system easy to use, and misses some obvious simplifications. One
obvious change would be to push text editing to a lower level, so text anywhere on the screen, not just in a
jim___ layer, could be edited with the mouse. mpxterm________ is currently being rewritten to support editing of dis-
played text.

Some things were done well. One of the Blit’s competitive advantages was that the two people
(Locanthi and Pike) who designed the hardware and software were the people who most wanted to use it.
Both understood the hardware and software issues, and the hardware and software were designed together
to work together, rather than by competing committees. Particularly in the design of the graphics memory,
iterations of the hardware design were punctuated by writing test software to develop a feeling for the
hardware/software tradeoffs, and where best to resolve them. Finally, the bulk of the software was written
by the same two people, and mpx____ and mpxterm________ were written by one (Pike).

Simplicity rules the Blit software. The operating system has no memory management and the sim-
plest process structure possible. The user interface is devoid of the usual frills and bunting that decorate
most graphics environments. For example, there is only one type of menu� a list of strings. Many menu
styles can be envisioned, and they would certainly be used if implemented, but only one is necessary. The
Blit graphics library is about 8K bytes of compiled code, of which over 3K is bitblt_____, texture______ and the line-
drawing primitives. This is a small fraction of the size of most interactive graphics systems.

The Blit is inexpensive. For little more than the cost of replacing the 24×80 terminals, everyone in
our research center, including the support staff, has a Blit, and several have two. Also, replacing terminals
is a simple way to migrate to a new environment. The system underneath is still Unix� the same Unix
systems, in fact � so nothing was left behind, and only new things had to be implemented.

From the user’s point of view, the Blit has brought about a far-reaching change in attitude: in conven-
tional environments, even on fancy time-sharing systems, the user must often wait for the machine to com-
plete some task such as a compilation; on the Blit, the machine is always ready to do something new� the
user is in control, not the machine.

Sometime in 1983

- 15 -

Acknowledgements

Many people helped and influenced the development of the Blit. Most important among them is Bart
Locanthi, who designed and built the terminal and much of the underlying graphics software. Piers Dick-
Lauder wrote the error-correcting protocol in mpx____ and wrote the 8th Edition version of mpx____ itself. Thanks
are also due to Sally Browning, Tom Cargill, Greg Chesson, Joe Condon, Dave Ditzel, Steve Johnson,
Andrew Hume, John Reiser and Dennis Ritchie, each of whom provided indispensable assistance and
enthusiastic encouragement.

References

1. T. A. Cargill, ‘‘The Blit Debugger,’’ Journal of Systems and Software,3, 4 (December 1983), pp. 277-
284.

2. D. H. Ingalls, ‘‘The Smalltalk Graphics Kernel,’’ Byte,6 (August 1981), pp. 168-194.
3. W. N. Joy, R. S. Fabry and K. Sklower, UNIX 4.1BSD Programmer’s Manual.
4. B. W. Kernighan, ‘‘Pic: A Language for Typesetting Graphics,’’ Software� Practice & Experience,12

(January, 1982), pp. 1-20.
5. B. N. Locanthi and R. Pike, ‘‘Hardware and Software Architecture of Bitmap Graphics on the Blit,’’

Software �Practice & Experience, to appear 1984.
6. R. Pike, ‘‘Graphics in Overlapping Bitmap Layers,’’ Trans. on Graph.,2, 2, pp. 135-160, 1983.
7. R. Pike, ‘‘Jim: The Text Editor for the Blit Terminal,’’ Software �Practice & Experience, to appear.
8. D. M. Ritchie, ‘‘A Stream Input-Output System,’’ Bell Sys. Tech. J., this issue.
9. C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sproull and D. R. Boggs, ‘‘Alto: A personal

computer,’’ CSL-79-11, August 1979, Xerox Corp.

Sometime in 1983

